Bayesian inference for directional conditionally autoregressive models
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Estimation for Directional Conditionally Autoregressive Models
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed using only the inter-distances between the regions. To accommodate the effect of directions, a new class of spatial models is developed using different weights given to neighbors in different direct...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملBayesian Mixtures of Autoregressive Models
In this paper we propose a class of time-domain models for analyzing possibly nonstationary time series. This class of models is formed as a mixture of time series models, whose mixing weights are a function of time. We consider specifically mixtures of autoregressive models with a common but unknown lag. To make the methodology work we show that it is necessary to first partition the data into...
متن کاملBayesian Estimates for Vector - Autoregressive Models
This paper examines frequentist risks of Bayesian estimates of VAR regression coefficient and error covariance matrices under competing loss functions, under a variety of non-informative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix an asymmetric LINEX estimator does better overall than the posterior mean. For the error covari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2009
ISSN: 1936-0975
DOI: 10.1214/09-ba425